3 research outputs found

    MiR-16-5p is frequently down-regulated in astrocytic gliomas and modulates glioma cell proliferation, apoptosis, and response to cytotoxic therapy

    Full text link
    AIMS Aberrant expression of microRNAs (miRNAs) is frequent in various cancers including gliomas. We aimed to characterize the role of miR-16-5p as a candidate tumour suppressor miRNA in gliomas. METHODS Real-time PCR-based approaches were used for miRNA and mRNA expression profiling of glioma and non-neoplastic brain tissues as well as glioma cell lines. Protein levels were determined by Western blotting. In vitro analyses were performed following overexpression of miR-16-5p, trichostatin A treatment, and siRNA-mediated knock-down of HDAC3 in glioma cells. Effects of miR-16-5p on glioma cell viability, apoptosis and response to irradiation and temozolomide were assessed. RESULTS Expression of miR-16-5p was reduced relative to control brain tissue in isocitrate dehydrogenase (IDH)-mutant astrocytomas of World Health Organization (WHO) grades II, III, and IV, and a subset of IDH-wildtype glioblastomas WHO grade IV. MiR-16-5p expression was lower in IDH-mutant than in IDH-wildtype gliomas, and down-regulated in IDH-wildtype glioma lines. MiR-16-5p overexpression reduced expression of important cell cycle and apoptosis regulators in glioma cells, including CDK6, CDC25A, CCND3, CCNE1, WEE1, CHEK1, BCL2, and MCL1. In line, CDK6, WEE1, CHEK1, BCL2, and MCL1 transcript levels were increased in WHO grade III or IV gliomas. Trichostatin A treatment and HDAC3 knockdown in glioma cells induced miR-16-5p up-regulation and reduced expression of its targets. Moreover, miR-16-5p overexpression inhibited proliferation and induced apoptosis in various glioma cell lines and increased sensitivity of A172 glioma cells to irradiation and temozolomide. CONCLUSION Reduced expression of miR-16-5p contributes to glioma cell proliferation, survival, and resistance to cytotoxic therapy. This article is protected by copyright. All rights reserved

    MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM

    Get PDF
    Glioblastoma is the most aggressive brain tumor in adults with a median survival below 12 months in population-based studies. The main reason for tumor recurrence and progression is constitutive or acquired resistance to the standard of care of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ/RT→TMZ). Here, we investigated the role of microRNA (miRNA) alterations as mediators of alkylator resistance in glioblastoma cells. Using microarray-based miRNA expression profiling of parental and TMZ-resistant cultures of three human glioma cell lines, we identified a set of differentially expressed miRNA candidates. From these, we selected miR-138 for further functional analyses as this miRNA was not only upregulated in TMZ-resistant versus parental cells, but also showed increased expression in vivo in recurrent glioblastoma tissue samples after TMZ/RT→TMZ treatment. Transient transfection of miR-138 mimics in glioma cells with low basal miR-138 expression increased glioma cell proliferation. Moreover, miR-138 overexpression increased TMZ resistance in long-term glioblastoma cell lines and glioma initiating cell cultures. The apoptosis regulator BIM was identified as a direct target of miR-138, and its silencing mediated the induced TMZ resistance phenotype. Altered sensitivity to apoptosis played only a minor role in this resistance mechanism. Instead, we identified the induction of autophagy to be regulated downstream of the miR-138/BIM axis and to promote cell survival following TMZ exposure. Our data thus define miR-138 as a glioblastoma cell survival-promoting miRNA associated with resistance to TMZ therapy in vitro and with tumor progression in vivo

    Preoperative chemotherapy and radiotherapy concomitant to cetuximab in resectable stage IIIB NSCLC: a multicentre phase 2 trial (SAKK 16/08).

    Get PDF
    Neoadjuvant chemotherapy (CT) followed by radiotherapy (RT) and surgery showed a median survival of 28.7 months in resectable stage IIIB non-small-cell lung cancer (NSCLC) patients (pts). Here, we evaluate the impact of concomitant cetuximab to the same neoadjuvant chemo-radiotherapy (CRT) in selected patients (pts) with NSCLC, stage IIIB. Resectable stage IIIB NSCLC received three cycles of CT (cisplatin 100 mg/m <sup>2</sup> and docetaxel 85 mg/m <sup>2</sup> d1, q3w) followed by RT (44 Gy in 22 fractions) with concomitant cetuximab (250 mg/m <sup>2</sup> , q1w) and subsequent surgery. The primary endpoint was 1-year progression-free survival (PFS). Sixty-nine pts were included in the trial. Fifty-seven (83%) pts underwent surgery, with complete resection (R0) in 42 (74%) and postoperative 30 day mortality of 3.5%. Responses were: 57% after CT-cetuximab and 64% after CRT-cetuximab. One-year PFS was 50%. Median PFS was 12.0 months (95% CI: 9.0-15.6), median OS was 21.3 months, with a 2- and 3-yr survival of 41% and 30%, respectively. This is one of the largest prospective phase 2 trial to investigate the role of induction CRT and surgery in resectable stage IIIB disease, and the first adding cetuximab to the neoadjuvant strategy. This trial treatment is feasible with promising response and OS rates, supporting an aggressive approach in selected pts
    corecore